If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+9z-25=0
a = 1; b = 9; c = -25;
Δ = b2-4ac
Δ = 92-4·1·(-25)
Δ = 181
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{181}}{2*1}=\frac{-9-\sqrt{181}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{181}}{2*1}=\frac{-9+\sqrt{181}}{2} $
| 2x/4-3=4x-1/2 | | S+4m=465 | | 3(2-x)-5=-5x-3 | | 30/0.50=x | | E=23R+34.5o | | 960.25=23(33.5)+34.5o | | 2x^2+7x−3=−8 | | O.15x=2.85 | | −7x-8=-10x+4 | | 8(u+2)+8u=-32 | | 3(2f-5)-4f=2 | | -9=2(x-8)+5x | | 0=16x^2+54x+7 | | 13/17=x/6 | | 12-8=b | | (y``)^4-(y^`)^5=3y | | 6x+3=12+3x= | | 2(3-x-6=-5x | | -2(-3x+5)=-2(2x-5) | | 6(2x-3)=3(2x+2) | | 4(-2x+3=-4 | | x=35+0.3x | | 3(x−6)=15 | | 10x-4-2x=5+5x3 | | 6x+4=4x-16 | | 28/a=6 | | 78/a=6 | | 10w=10000000000 | | -18=2x+15. | | 5x19=2 | | 7y+2(y-5)+y=20 | | x+.06x=150 |